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Abstract

Examples play a critical role in guiding the
acquisition of cognitive skills. We have argued that
students need to apply the knowledge gathered from
studying examples to solve analogous problems for
that knowledge to be effective. There is a tradeoff
between the active nature of constructing solutions
and the facilitating effect of guiding problem solving
with a worked example. The present study examined
the impact of self-explanations on the effectiveness
of examples in guiding later problem solving. We
found that within a learning environment which
provided direct support for the self-explanation of
worked examples, such study could be as effective as
direct problem solving practice.

Introduction
There has been much attention focused on the role of

examples in acquiring new skills. Examples clearly play
a critical role in guiding learning (Sweller, 1988).
Students strongly focus on examples in instructional
material, and the ways in which students process
examples has a strong effect on their later problem
solving (Chi, Bassok, Lewis, Reimann, & Glaser,
1989; VanLehn, Jones, & Chi, 1992). In a recent series
of experiments, we examined the ways in which
processing examples can be useful in acquiring problem
solving knowledge (Trafton, 1994; Trafton & Reiser,
1993). We argued that students need to apply the
knowledge gathered from studying examples to solve
later problems in order to form useful problem solving
skills (cf. Anderson, 1987). The effectiveness of
studying annotated examples was reduced when a related
problem to solve did not immediately follow the studied
example, suggesting that drawing upon information
studied from an example to construct one's own
solution to a new problem is an important component
of acquiring problem solving knowledge.

These results emphasize the importance of the manner
in which students process instructional examples. An
important approach in this work has been to manipulate
students’ study activities on a set of source problems,
and then examine the effects of working with those
sources on their ability to solve later analogous target

problems. Source and target problems overlap in the
knowledge and subskills needed to solve them. What
influences the effectiveness of a source problem in
guiding later problem solving? Sweller and Cooper
(1985) argued that studying worked examples as sources
is more effective than solving the same problems. They
found that studying examples interleaved with problem
solving drawing upon those sources produced more
effective performance on later posttests than solving
those same sources. In contrast, Trafton (1994) found
that solving sources led to superior posttest
performance, and produced faster problem solving on the
targets than studying the same example sources.

Clearly, there are many factors that might influence
the relative effectiveness of encoding source problems
through study or solving them oneself. Trafton and
Reiser (1993) argued that there is a tradeoff between the
active nature of constructing solutions, in which
students must perform subgoal decomposition, operator
selection, and execution, and the facilitating effect of
guiding problem solving with a worked example. If the
search space is extensive, then the guidance of an
example may greatly facilitate problem solving, and it
may be difficult to map from a solution constructed
with much patching and debugging. Yet, if the problem
solving can be made more productive by reducing the
overhead of constructing solutions, making them more
easily interpretable, then the additional practice of
generating solutions may be more profitable. Trafton
(1994) found that when the learning environment
provided sufficient support for instrumental parts of the
task (e.g., minimizing the cognitive load of syntax and
debugging in programming), the extra practice involved
in constructing solutions to source problems
outweighed the benefits of the guidance provided by
worked examples.

The strategies used to process examples may also
mediate their effectiveness relative to solving problems.
Subjects who take a more active role in studying
solutions, attempting to explain each component,
considering why it was selected and how it operates,
learn more from studying those examples (Chi, et al.,
1989; VanLehn, et al., 1992). Thus, the degree to
which subjects treat examples as problems to be



mentally solved affects how well those examples can
function in guiding later problem solving. The initial
evidence for the effectiveness of self-explanation has
been correlational, relying on classifying more and less
successful problem solvers and looking for associated
differences in their self-explanation behavior on
examples in the lesson (Chi, et al., 1989; Pirolli &
Recker, 1994). Recently, there has also been an attempt
to train self-explanation and see whether subjects thus
trained perform better in later lessons (Bielaczyc,
Pirolli, & Brown, 1994).

How does self-explanation affect the relative efficacy
of studying examples versus solving problems? Again,
we focus on the use of knowledge acquired from
processing a source problem to facilitate constructing
solutions to target problems. Can self-explained
examples as sources function as effectively as solving
those problems themselves? The present experiment
examines this question, using a supportive learning
environment for LISP programming, in which we had
previously observed superior performance with solved
sources (Trafton, 1994). Second, we consider whether
self-explanation also affects the efficacy of a solved
problem. We are exploring the extent to which self-
explanation can be supported in the structure of the
learning environment activities. In our work on learning
environments, we have argued that environments can be
constructed to be congruent with effective reasoning
strategies (Merrill & Reiser, 1994). In the present
experiment, we examine the support a learning
environment can provide for self-explanation strategies.

Method

Design
We examined novices learning to program in LISP. We
presented subjects with pairs of source and related, but
not isomorphic, target problems which overlapped in
the subskills necessary for their solution. We
manipulated the type of source problem (worked
example or problem to solve) and whether subjects were
given instructions to self-explain while studying or
solving the source problems. Source and target
problems were interleaved to enable examination of the
effects of the source study method on solving problems
requiring overlapping subskills.  A sample source/target
pair is shown below:

• Source Problem: A sales company has planned
all the routes of its sales personnel. Then
management decided that all sales personnel must
begin each trip at the nearest branch office instead
of whatever they had originally planned as a first
destination.  Write a function that takes two
inputs -- the new destination, e.g. chicago, and a
list of old destinations, e.g. (detroit cinci stl), and
replaces the first destination of the list with the

new destination. The output should be the new
route -- e.g., (chicago cinci stl).

• Target Problem: While a university admissions
worker was entering personal information about
students, it was discovered that many last names
were entered incorrectly. To simplify future data
input, write a function that takes a correct last
name, e.g., smi th, and a list of personal
information, e.g., (john smit 24 psychology),
and returns a new, corrected list with the last
name replacing both the first and last name of the
old list, e.g. (smith 24 psychology). Your
function should take two inputs: the first should
be the correct last name (an atom), and the second
should be the old information (a list).

Subjects in the Example conditions studied a problem
statement, presented with a motivating cover story, and
a solution presented with no annotation other than a
sample input and its output. These subjects also
constructed the example solutions in the editor, to
equate for interface practice in building, editing, and
running programs across all conditions. Subjects in the
Solve conditions saw the same source problems but
solved them entirely on their own. All conditions
solved the same target problems, which were
indistinguishable in presentation from the source
problems of the Solve conditions. All problems were
taken from Trafton (1994), and were modified to exclude
the annotations used in this earlier study; piloting
showed that subjects were at a loss as to what to self-
explain when given fully annotated examples. All
problems were presented in the same order to all
subjects. The design is summarized in Table 1.

Table 1. Design of the learning sessions

No Self-Explain Self-Explain
Example Studied example

sources; solved
targets

Explained aloud
example sources;
solved targets

S o l v e Solved sources and
targets

S o l v e d  a n d
explained aloud
sources; solved
targets

Apparatus and Materials
Subjects worked with VSE, an interactive learning

environment for LISP which provides significant
support for the operational aspects of programming:
ensuring legal syntax and providing strong support for
testing and debugging programs. (VSE is described
more completely in Merrill & Reiser, 1994). Programs
are built in VSE by dragging functions from a menu
and placing them into an initially skeletal function body
(containing a defun form with a given name and empty
parameter list), significantly simplifying the code
construction process. VSE also enables students to run
their programs on test inputs, either all at once or step-
by-step. Solutions are then submitted to VSE, which



informs students if their solutions are correct or not.
Further, a debugging probe allows students to inspect
intermediate function output values during a run.
Finally, VSE provides simple hints on legal use of
functions when errors arise while running programs.
VSE allows students to focus less on the operational
aspects of programming LISP functions, and more on
the semantics of combining functions. For the Self-
Explain conditions, VSE was slightly modified to
prompt subjects to predict the output of their functions,
based on the input values they entered, immediately
prior to any code being evaluated. In this way, the
justifications of their code elicited through self-
explanation were immediately tied to their expectations
about program behavior. This should enhance any
effects of self-explanation by instantiating any newly
generated domain knowledge in explicitly visible
program behavior.

Procedure
Subjects participated in a single session which they
began by reading the first chapter from an introductory
LISP textbook (Anderson, Corbett, & Reiser, 1987).
The text described some basic LISP functions, the role
of functions in programming, and the use of variables.
Subjects retained this text for reference throughout the
acquisition phase of the experiment. Following the
reading, subjects in the Self-Explain conditions were
given a brief explanation of the purpose of self-
explanation and some initial practice in self-explanation
techniques. To ground this explanation, these subjects
solved a constraints satisfaction problem (from Nathan,
Mertz, & Ryan, 1994), unrelated to LISP or
programming. Subjects in the Example Self-Explain
condition were given this practice problem and a step-
by-step solution which they were asked to explain.
Subjects in the Solve Self-Explain condition were given
the same problem without a solution, and asked to
solve it and justify each step in their solution.

Subjects in the two Self-Explain conditions were then
provided instruction on the purpose of self-explanation
and the kinds of things to explain when solving a LISP
problem. Specifically, subjects were instructed to
explain the purpose of each function used in a solution
with respect to the requirements stated in the problem,
and how that function achieved its purpose. Subjects
were also instructed to explain the role of any variables
used in the problem, including what information that
variable held upon entry to the function and how it was
operated on. At this time, subjects were given a list of
strategic questions from Bielaczyc et. al (1994) and
instructed that asking themselves these questions would
help them to construct self-explanations. This explicit
instruction in self-explanation was intended to control
the kind and quality of elaborations subjects produced.
In particular, we aimed to maximize the quality of self-
explanations in order to maximize its benefits.

Subjects in all four conditions then received a
demonstration of the computer system, working
through two problems (one source, one target) with the
experimenter. Subjects then worked through five source-
target problem pairs, uninformed of the source vs. target
distinction. All subjects worked on each problem until
correct. In the Self-Explain conditions, subjects read
each source problem aloud and then proceeded to explain
either the solution given (Example) or their own
solution (Solve). These source problems were solved in
front of the experimenter, who prompted subjects only
when necessary to clarify vague statements, when
subjects paused talking for more than a few seconds, or
when subjects needed to speak more loudly. Subjects
were not required to explain solutions in any particular
order. For the Example Self-Explain condition, this
meant that subjects could explain the role of any
function in any order, not necessarily from left to right.
For the Solve Self-Explain condition, subjects were
encouraged to explain each step as they went. Subjects
were required, however, to explain all portions of their
code they had not yet explained prior to their first run of
a new or modified solution. Following the successful
solution of the source, subjects were left alone to solve
the next target problem.

During the acquisition phase, subjects received help
from the experimenter only for questions related to the
operation of VSE. Subjects were referred to the text for
LISP-related questions. Direct help on any problem was
provided only if subjects took an inordinate amount of
time to reach solution (more than 20 minutes on a
single problem). Help was always given as hints, never
as direct suggestions as to what to do next, or which
function to use, etc. Help was offered by the
experimenter only after a request from a subject, but
was actually rarely sought.

Posttest: Following the acquisition phase, all
subjects completed the same posttest. Subjects were not
instructed to self-explain during the posttest, but they
were also not discouraged from doing so. During the
posttest, the reference text read prior to the acquisition
phase was unavailable, as was the VSE feature allowing
functions to be run and debugged. Subjects constructed
what they thought was the correct solution to a
problem, and submitted it without feedback on its
correctness from the system or experimenter.

Subjects
Subjects were 40 Northwestern University
undergraduates with one quarter course or less of
computer programming experience. No subject had prior
experience with LISP. Data from one potential subject
were not included in these analyses because the subject
exhibited substantially more difficulty with the material
than other subjects (as indicated by solution time and
errors), and appeared to be engaging in a guessing
strategy (submitting untested answers) different from
other subjects. Of the 40 subjects, 26 were female and



14 were male. The age of the subjects ranged from 18 to
22 years, mean 20 years.

Subjects were randomly assigned to condition so as to
approximately balance mathematics SAT scores. The
mean math SAT scores of each condition were:
Example No-Self-Explain 673, Example Self-Explain
675, Solve No-Self-Explain 676, and Solve Self-
Explain 677. The median math SAT score for all
conditions was 670.

Results and Discussion
We were interested in two aspects of subject
performance: difficulty in solving target problems and
posttest performance. First, we considered the time
subjects took to solve the target problems as a measure
of the relative utility of their work on the preceding
source problem. We performed a 2x2 analysis of
covariance of source problem type (example or solve)
and source instruction (self-explain or not), using math
SAT score as the covariant. There were no main effects
of either source problem type or source instructions on
target problem solution time. The pattern of results,
shown in Figure 1, suggests differential effects of self-
explanation depending on source instruction, but the
interaction was only marginally reliable,
F(1, 35) = 2.42, p = .13. Because we expected there
may be differential effects of self explanation depending
upon whether subjects studied or solved the source
problems, we computed two planned comparisons to
separately  examine the effects of self-explanation for
each of the Example and Solve conditions. Also, to
examine more closely exactly where subjects’ time was
being spent, we broke target solution time down into
four components: initial planning time (time spent
looking at a problem prior to any activity), build time
(the time spent inserting new functions or variables into
code), edit time (deleting and replacing code), and testing
time (time spent running programs).
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Figure 1: Time to Solve Targets

 Of the four components of target solution time, the
interaction of source instruction and problem type was
reliable for editing time, F(1, 35) = 4.9, p < .05
(Figure 2), and not for the other three components. The
planned comparison revealed that subjects who self-
explained examples spent significantly less time editing
their solutions, F(1,35) = 3.8, p = .05. In contrast,
there were no effects of self-explanation for subjects

solving source problems, F<1 on any target solution
time components.

Subjects who self-explained examples also displayed
fewer errors during program runs, 1.3 vs. 3 errors,
although this trend was not reliable, F(1,35) = 1.96,
p = .17. Consistent with this, Example subjects
deleted somewhat fewer program components on targets
if they self-explained the sources, 6.3 vs. 13.1 deletes,
although this trend also was not reliable,
F(1,35) = 1.56, p > .20. These results suggest that
subjects who did not self-explain examples may have
performed more edits or spent more time deciding how
to repair their programs than subjects that did self-
explain.

Taken together, the time and error trends suggest that
subjects who self-explained examples were able to more
effectively encode the relevant knowledge and subskills
from source problems and apply them successfully to
subsequent target problems with fewer errors. Indeed, as
Figure 1 suggests, this improved encoding improved the
performance of the Example Self-Explain condition to
the level of the Solve conditions. Interestingly, there
was no evidence that self-explanation benefited the
subjects who solved the source problems.
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Figure 2: Time Editing Targets

We also examined the posttests to determine the
effects of source study method on later performance.
There were no main effects of source problem type or
source instruction or an interaction on posttest score, all
F<1 (see Table 2). It seems likely that our subjects
reached a ceiling effect on posttest score, since all
subjects eventually correctly solved all the problems in
the acquisition phase, using the debugging tools
available in the environment. There was, however, a
significant interaction of source type and instruction on
the time to construct solutions on the posttest,
F(1,35) = 5.38, p < .05. Again, this interaction was
due to the improved performance of the Example
subjects who self-explained sources over those who did
not, F(1,35) = 8.39, p < .01, while there was no
effect of self-explanation on the Solve conditions, F<1.
Thus, the benefit of self-explaining examples carried
over to problem solving efficiency on the posttest. Self-
explanation while studying examples improved
performance, as evidenced by faster solutions, and
improved it to the level of subjects who solved the
original sources.



Table 2: Performance on the Posttest

Example
No Self-Expl

Example
Self-Expl

Score 78.0 80.4
Time (min) 19.0 13.6

 Deletes 9.0 5.7
S o l v e

No Self-Expl
S o l v e

Self-Expl
Score 83.0 81.4

Time (min) 15.7 16.2
 Deletes 5.1 6.6

How did the self-explanations while studying
examples led to greater problem solving efficacy?
VanLehn et al. (1992) proposed that the elaborations
generated during self-explanation provide new
knowledge which can be used to guide later problem
solving. Our findings suggest this is indeed the case
within this environment. Recall that subjects were
explicitly instructed to provide domain-based
justifications for the use of functions: why one would
want to use a particular function in a certain place, and
how that function would achieve a subgoal of the
problem. These subjects’ self-explanation activity was
thus focused on encoding both the operational behaviors
of LISP functions and the kinds of subgoals that pieces
of code could accomplish. This encoding then enabled
them to better map the knowledge acquired studying
examples to analogous situations in target problems.
Thus, self-explanation of examples allowed subjects to
more accurately guide their search of the solution space
during target problems, as reflected by the lesser amount
of time spent editing erroneous solutions. Furthermore,
subjects not only elaborated their understanding of why
a particular example solution would work, but also
tested their predictions of the outcome of each solution
component. Thus, subjects could test and debug these
encodings prior to subsequent problem solving. We
believe that this explicit support within the learning
environment for testing predictions contributed to the
efficacy of self-explanation for these subjects.

The results in Figure 1 are consistent with the
findings of Trafton (1994), in which students solving
source problems outperformed students studying
examples. Here, self-explanation of examples seems to
have improved performance to the level exhibited by the
Solve conditions in these studies. Subjects’ self-
explanation of examples allowed them to construct the
kind of problem solving knowledge that the Solve
condition subjects were generating by constructing their
own solutions. Consistent with our earlier arguments
(Trafton, 1994; Trafton & Reiser, 1993), subjects who
self-explained examples were actively constructing
solutions similar to Solve subjects, while benefiting
from the guidance of a completed solution they were
attempting to explain that they knew to be correct.

Being high on both levels of this tradeoff appears to be
an advantage for subsequent problem solving.

We must ask, of course, why self-explanation had no
positive effect for subjects solving source problems.
The explanation may be simply that, within this
environment at least, the act of generating solutions to
problems led to the acquisition of subsequently relevant
problem solving knowledge, and there was little room
for self-explanation to have any benefit. VSE provides
significant support for problem solving, effectively
reducing the search space subjects must traverse to build
solutions. In such a constrained problem space, the need
for strategic monitoring of problem solving is reduced,
thus reducing a major benefit of self-explanation.
Furthermore, the domain problem solving knowledge
that subjects self-explaining examples were constructing
was already being directly generated by subjects in the
Solve conditions. Thus, the elaborations elicited by
self-explanation may have been no more productive than
the elaborations subjects were already constructing to
select and execute plans and operators.

The results here are consistent with the results from
other recent studies demonstrating an advantage for self-
explanation (Bielaczyc, et al., 1994; Nathan, et al.,
1994; Pirolli & Recker, 1994). Both Bielaczyc et al.
and Pirolli and Recker measured performance gains as
we did on target problems: the number of errors on
subsequent problem solving trials, rather than on
posttests. We do not see the improvement in posttest
scores found by Nathan, although it seems most likely
that our subjects reached a ceiling effect on the posttest
due to the substantial feedback provided by VSE and the
requirement that subjects correctly solve all problems in
the learning session.

In summary, our results show a marked trend toward
improved performance for those subjects who self-
explain examples over subjects employing their default
study strategies. One may wonder why subjects’
decreased editing time is not significantly reflected in
our other measures of the problem solving process,
such as the time to plan, build, or test solutions. One
possible explanation is that the intervention described
here is quite short. Subjects had minimal instruction on
self-explanation and were able to practice it on only five
problems. In Bielaczyc et. al’s (1994) study, for
example, subjects spent over 12 hours problem solving,
with more than an hour devoted solely to learning self-
explanation strategies.

Still, even with the minimal training provided here,
subjects who self-explained worked examples were able
to more efficiently solve target problems and posttest
problems. Our results suggest that the benefit these
subjects gained was a clearer understanding of what each
function they had learned did and how they could be
combined. That is, subjects who self-explained
examples built correct target solutions with less effort
spent repairing erroneous solutions than their
counterparts who merely studied examples. The



elaborations that these subjects produced enabled them
to construct relevant problem solving knowledge as if
they had solved the problems themselves.

The benefit of self-explanation appeared only when
subjects had worked examples to explain. Subjects in
the Solve conditions had to do considerably more work
to generate source solutions than their example
counterparts. This work apparently paid off during target
problem solution, regardless of whether it was self-
explained. Self-explanation did not appear to affect
subjects’ ability to generate solutions on their own.

Conclusion
The present study complements our earlier studies
(Faries & Reiser, 1995; Trafton, 1994; Trafton &
Reiser, 1993) showing that the effectiveness of the
study of examples as a method of skill acquisition is
critically related to students’ ability to apply the
knowledge gained through such study to problem
solving practice. We have previously argued that
studying examples is not in itself enough to ensure
useful learning in such domains as programming;
examples must be actively and productively applied to
new problems to be effective. This study shows that
self-explanation enhances the utility of examples and
students’ ability to more efficiently apply new
knowledge gained through such study of worked
examples to new problems.

It is unclear from our current findings whether self-
explanation can, under some conditions, have a
beneficial effect for students trying to solve problems
on their own. Perhaps the strategies for self-explaining
self-generated solutions are different than for self-
explaining worked examples. If such is the case, it has
important implications for inquiry learning, where
students are often generating not only their own
solutions, but their own problems. Here, the ability to
successfully monitor one’s own problem solving
activity becomes paramount. We are investigating these
issues in a considerably less procedural domain:
scientific reasoning (Tabak, Sandoval, Smith, Agganis,
Baumgartner, & Reiser, 1995). We expect that
supporting students in articulating and explaining their
own inquiry will be crucial to their success.
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